



Introduction Objective Material & methods Results & discussion Conclusions

Introduction Objective Material & methods Results & COFFEE SECTOR discussion Conclusions

Coffee consumption figures

- Coffee World production → 9.5 million tons
- EU countries were the most important worldwide consumers → 2.52
 million tons
- Spain involves the 8 % of coffee consumption → 0.21 million tons

Processing and consuming coffee leads to substantial amounts of

coffee is

around 2

Introduction Objective Material & methods Results & COFFEE SECTOR discussion Conclusions

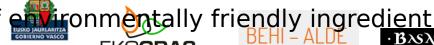
Managing of wet SCG in the European landfills → hi_ footprint

 \rightarrow 650 million kg CO₂ eq./year \triangle .26 CO₂ eq./kg

An alternative solution for large wet SCG volumes currently sent

Introduction Objective Material & methods Results & discussion Conclusions LIVESTOCK SECTOR

Livestock is projected to increase up to by 70 2050

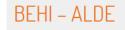

Many of the ingredients in the diets of EU livestock are sourced from **ported raw materials:** soybeans, etc.

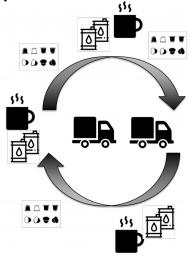
A risk to social, economic an environmental progress in Europe due to the increasing searcity of global resources

Inclosion of biowaste in animal feed → benefits for animal feed sector

Introduction **Objective** Material & methods Results & discussion Conclusions

To develop, test and demonstrate an <u>innovative</u>, <u>viable and</u> <u>sustainable</u> solution which increases significantly the coffee by-products recovery at EU level through their <u>up-grading as animal feed ingredients</u>, satisfying the increasing demand of alternative raw materials for animal feed



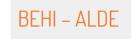


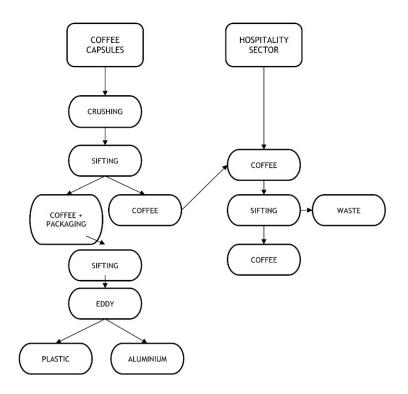
Introduction Objective Material & methods Results &

STAGES IN WHICH RECOVERY PROCESS IS DIVIDED

1)A multi-product logistic collection system for wet SCG from HORECA

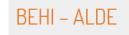
→ Used oil; Coffee capsules & wet-SCG





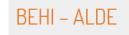
Introduction Objective Material & methods Results &

STAGES IN WHICH RECOVERY PROCESS IS DIVIDED 2)A decapsulation of coffee capsules



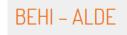
Introduction Objective Material & methods Results &

STAGES IN WHICH RECOVERY PROCESS IS DIVIDED 3)A flash drying process for wet SCG stabilization



Introduction Objective Material & methods Results &

STAGES IN WHICH RECOVERY PROCESS IS DIVIDED 4)A feed efficiency analysis of SCG ingredients in dairy cattle

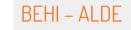


Introduction Objective Material & methods Results &

GEOGRAPHIC AREA FOR THE CASE STUDY

North of Spain

- 3rd coffee consumer in EU → 210 thousand tons
- 7th in dairy cattle activity → 7.1 million tons of milk


Proposed solution **replicable to any EU region**, since the coffee consumption and dairy cattle are widely distributed

MIBA

Spent coffee ground as second-generation feedstuff for dairy cattle

BEHI – ALDE

·BASATXERRI.

Introduction Objective Material & methods Results &

DEMONSTRATION TRIAL

- At semi-industrial scale
 - → Collecting and processing about 3 tons of w
 - → Producing 1.5 tons of SCG ingredient & 30 tons of experime diet
 - → Testing them in 150 heads of dairy cattle for about half a month
- This scale has allowed us to reach a Transfer readiness level (TRL) of 7

To evaluate the <u>technical and economic viability of industrial-scale</u> <u>implementation</u>

To reduce considerably the techno-economic and environmental risks

Introduction Objective Material & methods **Results &**discussion Conclusions

1) LOGISTICS

3 tons of wet SCG; 100 kg of CC & 3 tons of used oil were simultaneously collected from HORECA in different containers

- → 10 generation points
- → 1 week

Wet SCG & CC

Used oil

Technical feasibility of multi-product collection system for centralizing wet SCG produced by HORECA sector in a processing plant was demonstrated

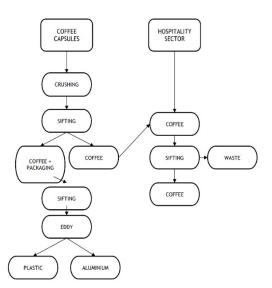
Introduction Objective Material & methods Results &

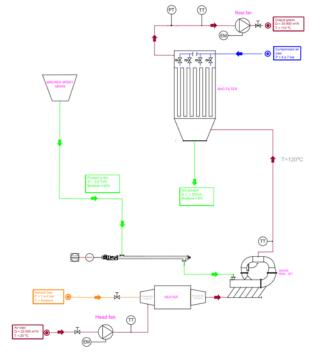
2) DECAPSULATION discussion Conclusions

100 kg of CC were decapsulated

- 1) Coffee capsules were crushed to extract wet SCG
- 2) Crushed material was placed in a vibrating screen sieve (3 mm) to recover the organic part and leaving above plastic aluminium
- 3) Plastic and alumium were separated according to the **Eddy current** where metal elements were attracted by a magnetic system

3g inorganic material / capsule




Introduction Objective Material & methods Results & discussion Conclusions

3) DRYING

3 tons of wet SCG was dried with Flash drying to produce 1.5 tons of SCG ingredient

This technology is more energy efficient than traditional technologies

- Product is broken in the drying chamber and the surface area of particles increases significantly
- Instantaneous Trying → required energy decreases considerably

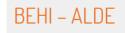
Introduction Objective Material & methods Results &

4) FEED PRODUCTION Conclusions

30 tons of dairy cattle feed was produced

→ 5 % of SCG ingredient

Raw materials	% Inclusion	Protein	Forage Units- milks (UFI)	Starch	Fat
Barley	14.92	11.6	1.09	60.2	2.1
Durum wheat	4.48	16.5	1.17	63.3	2.1
Corn	37.90	9.4	1.22	74.2	4.3
Rapeseed cake	13.35	38	0.96	0	2.6
Soy cake	18.43	47	1.20	0	1.9
Oil	1.54	0	2.73	0	100
SCG	5.00	13.4	0.16	Û	13.55
Vit-min	438 _{position}	of experinental diet	for dairy cather On 5 % of spen	t coffee grounds	0



Introduction Objective Material & methods Results &

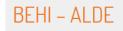
5) FEED EFFICIENCY discussion Conclusions

Experimental diets were tested in 150 heads of dairy cattle for

	Control	5 % of inclusion	EEM¹	p-valor
(L/day) Crude protein	31.4	31.8	0.61	0.0715
(q/kg)	33.5ª	32.9 ^b	0.37	0.0018
Crude fat (g/kg)	oduction and milk quality	in dairy cattle with 5 %	of spent coffee grou	nds 0.1345

No animals' behaviour alteration

Slight increase or maintenance of milk production
Slight increase or maintenance of fat content in milk



Introduction Objective Material & methods Results & discussion

- SCG ingredient stands as a potential alternative for replacing current ingredients (such as soy meal) in dairy cattle:
 - ✓ Availability in Europe → 2.52 millions tons of wet SCG
 - ✓ Nutritional characteristics
 - ✓ Results obtained in the feed efficiency trials with animals.
- This will contribute to increase the sustainability and competitiveness of coffee producing and consuming sector
 - ✓ By reducing wet SCG quantities landfilled
 - ✓ Through their up-grading as animal feed ingredients
- This will contribute to increase the sustainability and competitiveness of feed sector
 - ✓ By reducing the dependence on current raw materials market
 - ✓ By satisfying the highly increasing demand of new raw materials for animal feed

